Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
1.
Sci Total Environ ; 893: 164766, 2023 Oct 01.
Article in English | MEDLINE | ID: covidwho-20238295

ABSTRACT

Wastewater-based epidemiology (WBE) is a promising approach for monitoring the spread of SARS-CoV-2 within communities. Although qPCR-based WBE is powerful in that it allows quick and highly sensitive detection of this virus, it can provide limited information about which variants are responsible for the overall increase or decrease of this virus in sewage, and this hinders accurate risk assessments. To resolve this problem, we developed a next generation sequencing (NGS)-based method to determine the identity and composition of individual SARS-CoV-2 variants in wastewater samples. Combination and optimization of targeted amplicon-sequencing and nested PCR allowed detection of each variant with sensitivity comparable to that of qPCR. In addition, by targeting the receptor binding domain (RBD) of the S protein, which has mutations informative for variant classification, we could discriminate most variants of concern (VOC) and even sublineages of Omicron (BA.1, BA.2, BA.4/5, BA.2.75, BQ.1.1 and XBB.1). Focusing on a limited domain has a benefit of decreasing the sequencing reads. We applied this method to wastewater samples collected from a wastewater treatment plant in Kyoto city throughout 13 months (from January 2021 to February 2022) and successfully identified lineages of wild-type, alpha, delta, omicron BA.1 and BA.2 as well as their compositions in the samples. The transition of these variants was in good agreement with the epidemic situation reported in Kyoto city during that period based on clinical testing. These data indicate that our NGS-based method is useful for detecting and tracking emerging variants of SARS-CoV-2 in sewage samples. Coupled with the advantages of WBE, this method has the potential to serve as an efficient and low cost means for the community risk assessment of SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , Sewage
2.
Environ Sci Pollut Res Int ; 30(31): 76687-76701, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20233111

ABSTRACT

The COVID-19 pandemic resulted in the collapse of healthcare systems and led to the development and application of several approaches of wastewater-based epidemiology to monitor infected populations. The main objective of this study was to carry out a SARS-CoV-2 wastewater based surveillance in Curitiba, Southern Brazil Sewage samples were collected weekly for 20 months at the entrance of five treatment plants representing the entire city and quantified by qPCR using the N1 marker. The viral loads were correlated with epidemiological data. The correlation by sampling points showed that the relationship between the viral loads and the number of reported cases was best described by a cross-correlation function, indicating a lag between 7 and 14 days amidst the variables, whereas the data for the entire city presented a higher correlation (0.84) with the number of positive tests at lag 0 (sampling day). The results also suggest that the Omicron VOC resulted in higher titers than the Delta VOC. Overall, our results showed that the approach used was robust as an early warning system, even with the use of different epidemiological indicators or changes in the virus variants in circulation. Therefore, it can contribute to public decision-makers and health interventions, especially in vulnerable and low-income regions with limited clinical testing capacity. Looking toward the future, this approach will contribute to a new look at environmental sanitation and should even induce an increase in sewage coverage rates in emerging countries.


Subject(s)
COVID-19 , Myrtaceae , Humans , Wastewater , SARS-CoV-2 , Sewage , COVID-19/epidemiology , Brazil/epidemiology , Pandemics
3.
Environ Sci Pollut Res Int ; 30(33): 80855-80862, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20232635

ABSTRACT

The first aim of study was to quantify the viral load in the wastewater samples by RT-qPCR testing in Lahore population to estimate the number of patients affected and predict the next resurgence of COVID-19 wave in the city. The second aim of the study was to determine the hotspot areas of Lahore which remained positive more often for virus with high viral load. In this study, n = 420 sewage samples were collected on an average of two weeks intervals from 30 different sewage water disposal stations (14 sampling events) from Sept 2020 to March 2021. RNA was extracted and quantified by RT-qPCR without concentrating the virus in samples. Number of positive disposal sites (7-93%), viral load from sewage samples (100.296 to 103.034), and estimated patients (660-17,030) ranged from low to high according to the surge and restrain of 2nd and 3rd COVID-19 waves in the country. The viral load and estimated patients were reported high in January 2021 and March 2021 which were similar to the peak of 2nd and 3rd waves in Pakistan. Site 18 (Niaz Baig village DS) showed the highest viral load among all sites. Findings of the present study helped to estimate the number of patients and track the resurgence in COVID-19 waves in Lahore particularly, and in Punjab generally. Furthermore, it emphasizes the role of wastewater-based epidemiology to help policymakers strengthen the quarantine measures along with immunization to overcome enteric viral diseases. Local and national stake holders should work in collaboration to improve the environmental hygiene to control the disease.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pakistan/epidemiology , Wastewater-Based Epidemiological Monitoring , Sewage , Wastewater
4.
Environ Sci Pollut Res Int ; 30(29): 74386-74397, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2326985

ABSTRACT

In the context of the COVID-19 pandemic, antiviral drugs (AVDs) were heavily excreted into wastewater and subsequently enriched in sewage sludge due to their widespread use. The potential ecological risks of AVDs have attracted increasing attention, but information on the effects of AVDs on sludge anaerobic digestion (AD) is limited. In this study, two typical AVDs (lamivudine and ritonavir) were selected to investigate the responses of AD to AVDs by biochemical methane potential tests. The results indicated that the effects of AVDs on methane production from sludge AD were dose- and type-dependent. The increased ritonavir concentration (0.05-50 mg/kg TS) contributed to an 11.27-49.43% increase in methane production compared with the control. However, methane production was significantly decreased at high lamivudine doses (50 mg/kg TS). Correspondingly, bacteria related to acidification were affected when exposed to lamivudine and ritonavir. Acetoclastic and hydrotropic methanogens were inhibited at a high lamivudine dose, while ritonavir enriched methylotrophic and hydrotropic methanogens. Based on the analysis of intermediate metabolites, the inhibition of lamivudine and the promotion of ritonavir on acidification and methanation were confirmed. In addition, the existence of AVDs could affect sludge properties. Sludge solubilization was inhibited when exposed to lamivudine and enhanced by ritonavir, perhaps caused by their different structures and physicochemical properties. Moreover, lamivudine and ritonavir could be partially degraded by AD, but 50.2-68.8% of AVDs remained in digested sludge, implying environmental risks.


Subject(s)
COVID-19 , Sewage , Humans , Sewage/chemistry , Anaerobiosis , Biofuels , Waste Disposal, Fluid/methods , Antiviral Agents/pharmacology , Ritonavir , Lamivudine/metabolism , Pandemics , Methane/metabolism , Bioreactors
5.
J Hazard Mater ; 457: 131694, 2023 09 05.
Article in English | MEDLINE | ID: covidwho-2326984

ABSTRACT

Antiviral drugs (ATVs) are widely used to treat illnesses caused by viruses. Particularly, ATVs were consumed in such large quantities during the pandemic that high concentrations were detected in wastewater and aquatic environment. Since ATVs are not fully absorbed by the human or animal body, this results in large amounts of them being discharged into the sewage through urine or feces. Most ATVs can be degraded by microbes at wastewater treatment plants (WWTPs), while some ATVs either require deep treatment to reduce concentration and toxicity. Parent and metabolites residing in effluent posed a varying degree of risk when entering the aquatic environment, while increasing the potential of natural reservoirs for environmentally acquired antiviral drug resistance potential. There is a rising research on the behavior of ATVs in the environment has surged since the pandemic. In the context of multiple viral diseases worldwide, especially during the current COVID-19 pandemic, a comprehensive assessment of the occurrence, removal, and risk of ATVs is urgently needed. This review aims to discuss the fate of ATVs in WWTPs from various regions in the world with wastewater as the main analyzing object. The ultimate goal is to focus on ATVs with high ecological impact and regulate their use or develop advanced treatment technologies to mitigate the risk to the environment.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Animals , Humans , Wastewater , Antiviral Agents , Pandemics , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring , COVID-19/epidemiology , Sewage , Waste Disposal, Fluid
6.
Curr Opin Gastroenterol ; 37(1): 4-8, 2021 01.
Article in English | MEDLINE | ID: covidwho-2318694

ABSTRACT

PURPOSE OF REVIEW: We discuss the potential role of the faecal chain in COVID-19 and highlight recent studies using waste water-based epidemiology (WBE) to track severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RECENT FINDINGS: WBE has been suggested as an adjunct to improve disease surveillance and aid early detection of circulating disease. SARS-CoV-2, the aetiological agent of COVID-19, is an enveloped virus, and as such, typically not associated with the waste water environment, given high susceptibility to degradation in aqueous conditions. A review of the current literature supports the ability to detect of SARS-CoV-2 in waste water and suggests methods to predict community prevalence based on viral quantification. SUMMARY: The summary of current practices shows that while the isolation of SARS-CoV-2 is possible from waste water, issues remain regarding the efficacy of virial concentration and subsequent quantification and alignment with epidemiological data.


Subject(s)
COVID-19/epidemiology , Public Health Surveillance/methods , SARS-CoV-2/isolation & purification , Sewage/virology , COVID-19/diagnosis , Feces/virology , Global Health , Humans
7.
Water Res ; 238: 120023, 2023 Jun 30.
Article in English | MEDLINE | ID: covidwho-2320403

ABSTRACT

Wastewater-based epidemiology (WBE) is a promising technique for monitoring the rapidly increasing use of antiviral drugs during the COVID-19 pandemic. It is essential to evaluate the in-sewer stability of antiviral drugs in order to determine appropriate biomarkers. This study developed an analytical method for quantification of 17 typical antiviral drugs, and investigated the stability of target compounds in sewer through 4 laboratory-scale gravity sewer reactors. Nine antiviral drugs (lamivudine, acyclovir, amantadine, favipiravir, nevirapine, oseltamivir, ganciclovir, emtricitabine and telbivudine) were observed to be stable and recommended as appropriate biomarkers for WBE. As for the other 8 unstable drugs (abacavir, arbidol, ribavirin, zidovudine, ritonavir, lopinavir, remdesivir and efavirenz), their attenuation was driven by adsorption, biodegradation and diffusion. Moreover, reaction kinetics revealed that the effects of sediments and biofilms were regarded to be independent in gravity sewers, and the rate constants of removal by biofilms was directly proportional to the ratio of surface area against wastewater volume. The study highlighted the potential importance of flow velocity for compound stability, since an increased flow velocity significantly accelerated the removal of unstable biomarkers. In addition, a framework for graded evaluation of biomarker stability was proposed to provide reference for researchers to select suitable WBE biomarkers. Compared with current classification method, this framework considered the influences of residence time and different removal mechanisms, which additionally screened four antiviral drugs as viable WBE biomarkers. This is the first study to report the stability of antiviral drugs in gravity sewers.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Sewage , Wastewater-Based Epidemiological Monitoring , Antiviral Agents , Pandemics , Water Pollutants, Chemical/analysis , Biomarkers
8.
Br J Gen Pract ; 73(730): 195, 2023 05.
Article in English | MEDLINE | ID: covidwho-2316411
9.
J Water Health ; 21(4): 514-524, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2296210

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease that is mainly spread through aerosolized droplets containing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is excreted in feces by infected individuals. Sewage surveillance has been applied widely to obtain data on the prevalence of COVID-19 in whole communities. We used SARS-CoV-2 gene targets N1, N2, and E to determine the prevalence of COVID-19 at both municipal and building levels. Frequency analysis of wastewater testing indicated that single markers detected only 85% or less of samples that were detected as positive for SARS-CoV-2 with the three markers combined, indicating the necessity of pairing markers to lower the false-negative rate. The best pair of markers in both municipal and building level monitoring was N1 and N2, which correctly identified 98% of positive samples detected with the three markers combined. The degradation rates of all three targets were assessed at two different temperatures (25 and 35 °C) as a possible explanation for observed differences between markers in frequency. Results indicated that all three RNA targets degrade at nearly the same rate, indicating that differences in degradation rate are not responsible for the observed differences in marker frequency.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Sewage , Wastewater , Prevalence
10.
Sci Total Environ ; 883: 163599, 2023 Jul 20.
Article in English | MEDLINE | ID: covidwho-2293985

ABSTRACT

Despite high vaccination rates in the Netherlands, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate. Longitudinal sewage surveillance was implemented along with the notification of cases as two parts of the surveillance pyramid to validate the use of sewage for surveillance, as an early warning tool, and to measure the effect of interventions. Sewage samples were collected from nine neighborhoods between September 2020 and November 2021. Comparative analysis and modeling were performed to understand the correlation between wastewater and case trends. Using high resolution sampling, normalization of wastewater SARS-CoV-2 concentrations, and 'normalization' of reported positive tests for testing delay and intensity, the incidence of reported positive tests could be modeled based on sewage data, and trends in both surveillance systems coincided. The high collinearity implied that high levels of viral shedding around the onset of disease largely determined SARS-CoV-2 levels in wastewater, and that the observed relationship was independent of variants of concern and vaccination levels. Sewage surveillance alongside a large-scale testing effort where 58 % of a municipality was tested, indicated a five-fold difference in the number of SARS-CoV-2-positive individuals and reported cases through standard testing. Where trends in reported positive cases were biased due to testing delay and testing behavior, wastewater surveillance can objectively display SARS-CoV-2 dynamics for both small and large locations and is sensitive enough to measure small variations in the number of infected individuals within or between neighborhoods. With the transition to a post-acute phase of the pandemic, sewage surveillance can help to keep track of re-emergence, but continued validation studies are needed to assess the predictive value of sewage surveillance with new variants. Our findings and model aid in interpreting SARS-CoV-2 surveillance data for public health decision-making and show its potential as one of the pillars of future surveillance of (re)emerging viruses.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring , Sewage
11.
Food Environ Virol ; 15(2): 176-191, 2023 06.
Article in English | MEDLINE | ID: covidwho-2296583

ABSTRACT

Viruses remain the leading cause of acute gastroenteritis (AGE) worldwide. Recently, we reported the abundance of AGE viruses in raw sewage water (SW) during the COVID-19 pandemic, when viral AGE patients decreased dramatically in clinics. Since clinical samples were not reflecting the actual state, it remained important to determine the circulating strains in the SW for preparedness against impending outbreaks. Raw SW was collected from a sewage treatment plant in Japan from August 2018 to March 2022, concentrated by polyethylene-glycol-precipitation method, and investigated for major gastroenteritis viruses by RT-PCR. Genotypes and evolutionary relationships were evaluated through sequence-based analyses. Major AGE viruses like rotavirus A (RVA), norovirus (NoV) GI and GII, and astrovirus (AstV) increased sharply (10-20%) in SW during the COVID-19 pandemic, though some AGE viruses like sapovirus (SV), adenovirus (AdV), and enterovirus (EV) decreased slightly (3-10%). The prevalence remained top in the winter. Importantly, several strains, including G1 and G3 of RVA, GI.1 and GII.2 of NoV, GI.1 of SV, MLB1 of AstV, and F41 of AdV, either emerged or increased amid the pandemic, suggesting that the normal phenomenon of genotype changing remained active over this time. This study crucially presents the molecular characteristics of circulating AGE viruses, explaining the importance of SW investigation during the pandemic when a clinical investigation may not produce the complete scenario.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Gastroenteritis , Norovirus , RNA Viruses , Rotavirus , Sapovirus , Viruses , Humans , Wastewater , Pandemics , Sewage , Viruses/genetics , Rotavirus/genetics , Norovirus/genetics , Sapovirus/genetics , Enterovirus Infections/epidemiology , Adenoviridae/genetics , Genotype , Phylogeny , Feces
12.
Sci Total Environ ; 881: 163453, 2023 Jul 10.
Article in English | MEDLINE | ID: covidwho-2291612

ABSTRACT

The present study reviewed the occurrence of SARS-CoV-2 RNA and the evaluation of virus infectivity in feces and environmental matrices. The detection of SARS-CoV-2 RNA in feces and wastewater samples, reported in several studies, has generated interest and concern regarding the possible fecal-oral route of SARS-CoV-2 transmission. To date, the presence of viable SARS-CoV-2 in feces of COVID-19 infected people is not clearly confirmed although its isolation from feces of six different patients. Further, there is no documented evidence on the infectivity of SARS-CoV-2 in wastewater, sludge and environmental water samples, although the viral genome has been detected in these matrices. Decay data revealed that SARS-CoV-2 RNA persisted longer than infectious particle in all aquatic environment, indicating that genome quantification of SARS-CoV-2 does not imply the presence of infective viral particles. In addition, this review also outlined the fate of SARS-CoV-2 RNA during the different steps in the wastewater treatment plant and focusing on the virus elimination along the sludge treatment line. Studies showed complete removal of SARS-CoV-2 during the tertiary treatment. Moreover, thermophilic sludge treatments present high efficiency in SARS-CoV-2 inactivation. Further studies are required to provide more evidence with respect to the inactivation behavior of infectious SARS-CoV-2 in different environmental matrices and to examine factors affecting SARS-CoV-2 persistence.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Wastewater , Sewage , RNA, Viral
13.
Microbiol Spectr ; 11(3): e0363222, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2263471

ABSTRACT

Continuous surveillance of enteroviruses (EVs) in urban domestic sewage can timely reflect the circulation of EVs in the environment and crowds, and play a predictive and early warning role in EV-related diseases. To better understand the long-term epidemiological trends of circulating EVs and EV-related diseases, we conducted a 9-year (2013 to 2021) surveillance study of non-polio EVs (NPEVs) in urban sewage in Guangzhou city, China. After concentrating and isolating the viruses from the sewage samples, NPEVs were detected and molecular typing was performed. Twenty-one different NPEV serotypes were identified. The most isolated EVs were echovirus 11 (E11), followed by coxsackievirus (CV) B5, E6, and CVB3. EV species B prevailed in sewage samples, but variations in the annual frequency of different serotypes were also observed in different seasons, due to spatial and temporal factors. E11 and E6 were detected continuously before 2017, and the number of isolates was relatively stable during the surveillance period. However, after their explosive growth in 2018 and 2019, their numbers suddenly decreased significantly. CVB3 and CVB5 had alternating trends; CVB5 was most frequently detected in 2013 to 2014 and 2017 to 2018, while CVB3 was most frequently detected in 2015 to 2016 and 2020 to 2021. Phylogenetic analysis showed that at least two different transmission chains of CVB3 and CVB5 were prevalent in Guangzhou City. Our results show that in the absence of a comprehensive and systematic EV-related disease surveillance system in China, environmental surveillance is a powerful and effective tool to strengthen and further investigate the invisible transmission of EVs in the population. IMPORTANCE This study surveilled urban sewage samples from north China for 9 years to monitor enteroviruses. Samples were collected, processed, and viral identification and molecular typing were performed. We detected 21 different non-polio enteroviruses (NPEVs) with yearly variations in prevalence and peak seasons. In addition, this study is very important for understanding the epidemiology of EVs during the COVID-19 pandemic, as the detection frequency and serotypes of EVs in sewage changed considerably around 2020. We believe that our study makes a significant contribution to the literature because our results strongly suggest that environmental surveillance is an exceptionally important tool, which can be employed to detect and monitor organisms of public health concern, which would otherwise be missed and under-reported by case-based surveillance systems alone.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Poliomyelitis , Humans , Sewage , Prevalence , Phylogeny , Pandemics , COVID-19/epidemiology , Enterovirus Infections/epidemiology , Antigens, Viral , China/epidemiology
14.
Sci Total Environ ; 878: 163079, 2023 Jun 20.
Article in English | MEDLINE | ID: covidwho-2260060

ABSTRACT

The use of wastewater-based epidemiology to evaluate the health and lifestyle of the population is a novel research interest. However, studies concerning the excretion of endogenous metabolites due to oxidative stress and the consumption of anabolic steroids have rarely been involved. In this study, we compared the effects of events such as final examination and sports meeting on the levels of four oxidative stress biomarkers (8-isoPGF2α, HNE-MA, 8-OHdG, and HCY) and four prohibited anabolic steroids (Testosterone, Androstenedione, Boldenone, and Metandienone) in sewage, using university students and urban populations as studying target. It was found that the per capita mass load of the four oxidative stress biomarkers 8-isoPGF2α, HNE-MA, 8-OHdG, and HCY in the sewage of Guangzhou urban area and university town were 256.6 ± 76.1, 9.4 ± 3.8, 1.1 ± 0.5, and 0.9 ± 0.4 mg/d/1000, respectively. The mean mass load of 8-isoPGF2α was significantly higher than that before the COVID-19 pandemic (74.9 ± 29.6 mg/d/1000 people, P < 0.05). The per capita load levels of oxidative stress biomarkers were significantly higher (P < 0.05) during the 2022 exam week relative to the pre-exam period, indicating that the exams caused transient stress to students. The per capita mass load of androgenic steroids was 77.7 mg/d/1000 people. There was an increase in the per capita load level of androgenic steroids during the provincial sports meeting. In this study, we quantified the concentration of oxidative stress biomarkers and androgenic steroids in the sewage and better realized the application of WBE on the health level and lifestyle of the population during special events.


Subject(s)
Anabolic Agents , COVID-19 , Humans , Anabolic Androgenic Steroids , Sewage , Pandemics , 8-Hydroxy-2'-Deoxyguanosine , Biomarkers , Oxidative Stress , Students
15.
Appl Environ Microbiol ; 89(4): e0185322, 2023 04 26.
Article in English | MEDLINE | ID: covidwho-2266649

ABSTRACT

In the global strategy for polio eradication, environmental surveillance (ES) has been established worldwide to monitor polioviruses. In addition, nonpolio enteroviruses are simultaneously isolated from wastewater under this ES program. Hence, ES can be used to monitor enteroviruses in sewage to supplement clinical surveillance. In response to the coronavirus disease 2019 (COVID-19) pandemic, we also monitored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in sewage using the polio ES system in Japan. Enterovirus and SARS-CoV-2 were detected in sewage from January 2019 to December 2021 and from August 2020 to November 2021, respectively. Enterovirus species such as echoviruses and coxsackieviruses were frequently detected by ES in 2019, indicating the circulation of these viruses. After the onset of the COVID-19 pandemic, sewage enterovirus detection and related patient reports were notably reduced in 2020 to 2021, suggesting changes in the hygiene behaviors of the human population in response to the pandemic. Our comparative experiment with a total of 520 reverse transcription-quantitative PCR (RT-qPCR) assays for SARS-CoV-2 detection demonstrated that the solid-based method had a significantly higher detection rate than that of the liquid-based method (24.6% and 15.9%, respectively). Moreover, the resulting RNA concentrations were correlated with the number of new COVID-19 cases (Spearman's r = 0.61). These findings indicate that the existing polio ES system can be effectively used for enterovirus and SARS-CoV-2 sewage monitoring using different procedures such as virus isolation and molecular-based detection. IMPORTANCE Long-term efforts are required to implement surveillance programs for the ongoing COVID-19 pandemic, and they will be required even in the postpandemic era. We adopted the existing polio environmental surveillance (ES) system for SARS-CoV-2 sewage monitoring in Japan as a practical and cost-effective approach. Moreover, the ES system routinely detects enteroviruses from wastewater and, therefore, can be used for enterovirus monitoring. The liquid fraction of the sewage sample is used for poliovirus and enterovirus detection, and the solid fraction can be used for SARS-CoV-2 RNA detection. The present study demonstrates how the existing ES system can be used for monitoring enteroviruses and SARS-CoV-2 in sewage.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Poliomyelitis , Poliovirus , Humans , SARS-CoV-2/genetics , Wastewater , Sewage , Japan/epidemiology , Pandemics , RNA, Viral/genetics , COVID-19/epidemiology , Enterovirus/genetics , Poliovirus/genetics , Environmental Monitoring/methods
16.
Lancet Microbe ; 4(6): e442-e451, 2023 06.
Article in English | MEDLINE | ID: covidwho-2278588

ABSTRACT

BACKGROUND: Clinical surveillance for COVID-19 has typically been challenging in low-income and middle-income settings. From December, 2019, to December, 2021, we implemented environmental surveillance in a converging informal sewage network in Dhaka, Bangladesh, to investigate SARS-CoV-2 transmission across different income levels of the city compared with clinical surveillance. METHODS: All sewage lines were mapped, and sites were selected with estimated catchment populations of more than 1000 individuals. We analysed 2073 sewage samples, collected weekly from 37 sites, and 648 days of case data from eight wards with varying socioeconomic statuses. We assessed the correlations between the viral load in sewage samples and clinical cases. FINDINGS: SARS-CoV-2 was consistently detected across all wards (low, middle, and high income) despite large differences in reported clinical cases and periods of no cases. The majority of COVID-19 cases (26 256 [55·1%] of 47 683) were reported from Ward 19, a high-income area with high levels of clinical testing (123 times the number of tests per 100 000 individuals compared with Ward 9 [middle-income] in November, 2020, and 70 times the number of tests per 100 000 individuals compared with Ward 5 [low-income] in November, 2021), despite containing only 19·4% of the study population (142 413 of 734 755 individuals). Conversely, a similar quantity of SARS-CoV-2 was detected in sewage across different income levels (median difference in high-income vs low-income areas: 0·23 log10 viral copies + 1). The correlation between the mean sewage viral load (log10 viral copies + 1) and the log10 clinical cases increased with time (r = 0·90 in July-December, 2021 and r=0·59 in July-December, 2020). Before major waves of infection, viral load quantity in sewage samples increased 1-2 weeks before the clinical cases. INTERPRETATION: This study demonstrates the utility and importance of environmental surveillance for SARS-CoV-2 in a lower-middle-income country. We show that environmental surveillance provides an early warning of increases in transmission and reveals evidence of persistent circulation in poorer areas where access to clinical testing is limited. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Wastewater-Based Epidemiological Monitoring , COVID-19/epidemiology , Bangladesh/epidemiology , Sewage , Environmental Monitoring
17.
Nat Rev Microbiol ; 21(5): 277, 2023 05.
Article in English | MEDLINE | ID: covidwho-2257657
18.
Water Sci Technol ; 87(4): 910-923, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2280864

ABSTRACT

In this long-term study (eight months), a wastewater-based epidemiology program was initiated as a decision support tool for the detection and containment of COVID-19 spread in the Technion campus. The on-campus students' accommodations (∼3,300 residents) were divided into housing clusters and monitored through wastewater SARS-CoV-2 surveillance in 10 manholes. Results were used to create a 'traffic-light' scheme allowing the Technion's COVID-19 task force to track COVID-19 spatiotemporal spread on the campus, and consequently, contain it before high morbidity levels develop. Of the 523 sewage samples analysed, 87.4% were negative for SARS-CoV-2 while 11.5% were positive, corroborating morbidity information the COVID-19 task force had. For 7.6% of the SARS-CoV-2 positive samples, the task force had no information about positive resident/s. In these events, new cases were identified after the relevant residents were clinically surge tested for COVID-19. Hence, in these instances, wastewater surveillance provided early warning helping to secure the health of the campus residents by minimising COVID-19 spread. The inflammation biomarker ferritin levels in SARS-CoV-2 positive sewage samples were significantly higher than in negative ones. This may indicate that in the future, ferritin (and other biomarkers) concentrations in wastewater could serve as indicators of infectious and inflammatory disease outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Wastewater , Wastewater-Based Epidemiological Monitoring , Sewage , Disease Outbreaks , Ferritins
19.
Sci Total Environ ; 875: 162661, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2274043

ABSTRACT

The paper discusses the implementation of Hong Kong's tailor-made sewage surveillance programme led by the Government, which has demonstrated how an efficient and well-organized sewage surveillance system can complement conventional epidemiological surveillance to facilitate the planning of intervention strategies and actions for combating COVID-19 pandemic in real-time. This included the setting up of a comprehensive sewerage network-based SARS-CoV-2 virus surveillance programme with 154 stationary sites covering 6 million people (or 80 % of the total population), and employing an intensive monitoring programme to take samples from each stationary site every 2 days. From 1 January to 22 May 2022, the daily confirmed case count started with 17 cases per day on 1 January to a maximum of 76,991 cases on 3 March and dropped to 237 cases on 22 May. During this period, a total of 270 "Restriction-Testing Declaration" (RTD) operations at high-risk residential areas were conducted based on the sewage virus testing results, where over 26,500 confirmed cases were detected with a majority being asymptomatic. In addition, Compulsory Testing Notices (CTN) were issued to residents, and the distribution of Rapid Antigen Test kits was adopted as alternatives to RTD operations in areas of moderate risk. These measures formulated a tiered and cost-effective approach to combat the disease in the local setting. Some ongoing and future enhancement efforts to improve efficacy are discussed from the perspective of wastewater-based epidemiology. Forecast models on case counts based on sewage virus testing results were also developed with R2 of 0.9669-0.9775, which estimated that up to 22 May 2022, around 2,000,000 people (~67 % higher than the total number of 1,200,000 reported to the health authority, due to various constraints or limitations) had potentially contracted the disease, which is believed to be reflecting the real situation occurring in a highly urbanized metropolis like Hong Kong.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring , Sewage , Pandemics , Hong Kong/epidemiology
20.
PLoS One ; 18(3): e0283664, 2023.
Article in English | MEDLINE | ID: covidwho-2273672

ABSTRACT

Understanding disease burden and transmission dynamics in resource-limited, low-income countries like Nepal are often challenging due to inadequate surveillance systems. These issues are exacerbated by limited access to diagnostic and research facilities throughout the country. Nepal has one of the highest COVID-19 case rates (915 cases per 100,000 people) in South Asia, with densely-populated Kathmandu experiencing the highest number of cases. Swiftly identifying case clusters (hotspots) and introducing effective intervention programs is crucial to mounting an effective containment strategy. The rapid identification of circulating SARS-CoV-2 variants can also provide important information on viral evolution and epidemiology. Genomic-based environmental surveillance can help in the early detection of outbreaks before clinical cases are recognized and identify viral micro-diversity that can be used for designing real-time risk-based interventions. This research aimed to develop a genomic-based environmental surveillance system by detecting and characterizing SARS-CoV-2 in sewage samples of Kathmandu using portable next-generation DNA sequencing devices. Out of 22 sites in the Kathmandu Valley from June to August 2020, sewage samples from 16 (80%) sites had detectable SARS-CoV-2. A heatmap was created to visualize the presence of SARS-CoV-2 infection in the community based on viral load intensity and corresponding geospatial data. Further, 47 mutations were observed in the SARS-CoV-2 genome. Some detected mutations (n = 9, 22%) were novel at the time of data analysis and yet to be reported in the global database, with one indicating a frameshift deletion in the spike gene. SNP analysis revealed possibility of assessing circulating major/minor variant diversity on environmental samples based on key mutations. Our study demonstrated the feasibility of rapidly obtaining vital information on community transmission and disease dynamics of SARS-CoV-2 using genomic-based environmental surveillance.


Subject(s)
COVID-19 , Sewage , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL